Please wait a minute...
文章检索
复杂系统与复杂性科学  2020, Vol. 17 Issue (1): 15-20    DOI: 10.13306/j.1672-3813.2020.01.002
  本期目录 | 过刊浏览 | 高级检索 |
克隆植物生长扩散的生态复杂性
韩定定1, 祁婷2a, 李德志2b
1.复旦大学信息科学与工程学院,上海 200443;
2.华东师范大学a通信与电子工程学院,b.生态与环境科学学院,上海 200241
Ecological Complexity of Clonal Plant Growth and Diffusion
HAN Dingding1, QI Ting2a, LI Dezhi2b
1.School of Information Science and Technology, Fudan University, Shanghai 200433, China;
2.a.School of Communication and Electronic Engineering, b.School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
全文: PDF(1753 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 首先确定了7种不同的生境格局以及植物的生长规则,并基于此提出分株扩散网络模型,模拟数字克隆植物的分株动态生长的过程。揭示了在分株的不同生长阶段,生境异质性、植物自身的结构特征对分株种群扩散过程的影响,得到分株网络,并对不同处理下的分株种群生长扩散过程进行定量描述,结果表明生境中的斑块分布越密集则分株种群增长速度越快,且不同植物对环境的适应性不同,在富养分斑块产生更长间隔子的基因型探索新生境的能力会更强,而在贫养分斑块产生更长间隔子的基因型更容易获取生境中的有利资源,由此揭示了克隆植物的生态复杂性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩定定
祁婷
李德志
关键词 克隆植物生境异质性分株网络生态复杂性    
Abstract:The paper determines seven habitat patterns and plant growth rules, and propose ramets distribution network model to simulate the dynamic growth of digitally cloned plants. The effects of habitat heterogeneity and the structural characteristics of the plants on the diffusion process of ramets at different growth stages were revealed. Besides,we obtain ramet network and quantitatively describe the growth and diffusion process of ramet population under different treatments. The results show that the denser the patch distribution in the habitat, the faster the ramets population will grow. Different plants adaptability to the environment differently, and genotypes that produce longer spacers in resource-rich patchesprefer to explore the habitat while the genotypes with longer spacer in the resource-poor patches are more likely to obtain favorable resources in the habitat.
Key wordsclone plants    heterogeneous habitat    ramets network    ecological complexity
收稿日期: 2020-01-17      出版日期: 2020-04-29
ZTFLH:  N94  
基金资助:国家自然科学基金(11875133,11075057)
作者简介: 韩定定(1968-),女,上海人,教授,博士,主要研究方向为超复杂网络与智慧系统。
引用本文:   
韩定定, 祁婷, 李德志. 克隆植物生长扩散的生态复杂性[J]. 复杂系统与复杂性科学, 2020, 17(1): 15-20.
HAN Dingding, QI Ting, LI Dezhi. Ecological Complexity of Clonal Plant Growth and Diffusion. Complex Systems and Complexity Science, 2020, 17(1): 15-20.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2020.01.002      或      http://fzkx.qdu.edu.cn/CN/Y2020/V17/I1/15
[1]Lopp J, Sammul M. Benefits of clonal propagation: impact of imported assimilates from connected ramets[J]. Plant Ecology, 2016, 217(3):315-329.
[2]Ottaviani G, Martínková J, Herben T, et al. On plant modularity traits: functions and challenges[J]. Trends in Plant Science, 2017, 22(8): 648-651.
[3]Chen X, Qian J H, Han D D. Tree network under space L and space P model[J]. Application Research of Computers, 2014, 279:557-566.
[4]Chen Q, Qian J H, Zhu L, et al. Optimal transport in time-varying small-world networks[J]. Physical Review E, 2016, 93(3):032321.
[5]韩定定, 柳康, 陈超, 等. 基于空间活跃度网络的搜索策略研究[J]. 复杂系统与复杂性科学, 2017, 14(2):103-109.
Han DingDing, Liu Kang, Chen Chao, et al. Search strategies based on spatial activity network[J]. Complex Systems and Complexity Science, 2017, 14(2):103-109.
[6]汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用[M]. 北京:清华大学出版社有限公司, 2006.
[7]Oborny B. The plant body as a network of semi-autonomous agents: a review[J]. Philosophical Transactions of the Royal Society B, 2019, 374(1774):20180371.
[8]Zhang Y, Zhang Q. Clonal integration of fragaria orientalis in reciprocal and coincident patchiness resources: Cost-Benefit Analysis[J]. PLoS ONE, 2013, 8(11):e80623.
[9]Hodas N, Zuend A, Mui W, et al. Influence of particle-phase state on the hygroscopic behavior of mixed organic-inorganic aerosols[J]. Atmospheric Chemistry and Physics, 2015, 15(9):5027-5045.
[10] Ott J P, Hartnett D C. Bud bank dynamics and clonal growth strategy in the rhizomatous grass,Pascopyrum smithii[J]. Plant Ecology, 2015,216(3):395-405.
[11] Zhao J, Liu Q, Wang L, et al. Prediction of competitive diffusion on complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2018, 507:12-21.
[12] Chen G, Wang X, Li X. Fundamentals of Complex Networks: Models, Structures and Dynamics. [M] Singapore: John Wiley & Sons, 2015.
[13] Klimešová J, Martínková J, Herben T. Horizontal growth: an overlooked dimension in plant trait space[J]. Perspectives in Plant Ecology Evolution and Systematics, 2018, 32: 18-21.
[14] 余艳泽, 陈希, 韩定定, 等. 互花米草克隆基株网络的随机游走特征[J]. 复杂系统与复杂性科学, 2017, 14(2):82-88.
Yu Yanze, Chen Xi, Han Dingding, et al. Random Walk on the Clonal Network of Spartina Alterniflora[J]. Complex Systems and Complexity Science, 2017, 14(2):82-88.
[15] Ikegami M, Whigham DF, Werger MJA. Responses of rhizome length and ramet production to resource availability in the clonal sedge Scirpus olneyi A. Gray[J]. Plant Ecology, 2007, 189(2):247-259.
[16] Herben T, Suzuki J I. A simulation study of the effects of architectural constraints and resource translocation on population structure and competition in clonal plants[J]. Evolutionary Ecology, 2001, 15(4):403-423.
[17] Cavallini F. Fitting a logistic curve to data[J]. College Mathematics Journal, 1993, 24(3):247-253.
[18] Wildov R, GoughL, Herben T, et al. Architectural and growth traits differ in effects on performance of clonal plants: an analysis using a field-parameterized simulation model[J]. Oikos, 2007, 116(5):836-852.
[19] Wolfer S R, Straile D. Spatio-temporal dynamics and plasticity of clonal architecture in Potamogeton perfoliatus[J]. Aquatic Botany, 2004, 78(4):307-318.
[20] Cain E M L. A Spatially Explicit Test of Foraging Behavior in a Clonal Plant[J]. Ecology, 1995, 76(4):1147-1155.
[21] Novoplansky A. Developmental plasticity in plants: implications of non-cognitive behavior[J]. Evolutionary Ecology, 2002, 16(3):177-188.
[22] 董鸣,于飞海,陈劲松. 克隆植物生态学[M].北京:科学出版社, 2011.
[1] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[2] 刘晓露, 贾书伟. 用户—产品二部分网络中用户声誉实证研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 37-44.
[3] 全吉, 周亚文, 王先甲. 社会困境博弈中群体合作行为演化研究综述[J]. 复杂系统与复杂性科学, 2020, 17(1): 1-14.
[4] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
[5] 钟丽君, 宾晟, 袁敏, 孙更新. 多功能复杂网络模型及其应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 31-40.
[6] 李阳, 田兴华, 张纪会. 基于改进BA网络的遗传算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 69-76.
[7] 朱萌萌, 宋运忠. 基于勒贝格采样的非线性系统优化控制[J]. 复杂系统与复杂性科学, 2019, 16(1): 83-93.
[8] 黄毅, 张胜, 戴维凯, 王硕, 杨芳. 加权网络的体积维数[J]. 复杂系统与复杂性科学, 2018, 15(3): 47-55.
[9] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-10.
[10] 应尚军, 纪小妹, 吴婷婷. 国际资本流动网络复杂性研究的总体框架[J]. 复杂系统与复杂性科学, 2018, 15(1): 38-44.
[11] 周荣荣, 李志勇, 郭非非, 许海玉, 唐仕欢. 补气药人参、黄芪防治心脑疾病的网络药理学研究[J]. 复杂系统与复杂性科学, 2018, 15(1): 18-23.
[12] 潘园园, 张力, 段玲玲, 段法兵. 离散Hopfield神经网络的手写数字识别研究[J]. 复杂系统与复杂性科学, 2018, 15(1): 75-79.
[13] 吴宗柠, 吕俊宇, 蔡宏波, 樊瑛. 双曲空间下国际贸易网络建模与分析——以小麦国际贸易为例[J]. 复杂系统与复杂性科学, 2018, 15(1): 31-37.
[14] 李云, 宋运忠. 基于混合模式的BA无标度网络同步研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 89-96.
[15] 谭少林, 吕金虎. 复杂网络上的演化博弈动力学——一个计算视角的综述[J]. 复杂系统与复杂性科学, 2017, 14(4): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Baidu
map