Please wait a minute...
文章检索
复杂系统与复杂性科学  2020, Vol. 17 Issue (3): 27-37    DOI: 10.13306/j.1672-3813.2020.03.002
  本期目录 | 过刊浏览 | 高级检索 |
基于多属性决策的电力网络关键节点识别
何铭, 邹艳丽, 梁明月, 李志慧, 高正
广西师范大学电子工程学院,广西 桂林 541004
Critical Node Identification of a Power Grid Based on Multi-Attribute Decision
HE Ming, ZOU Yanli, LIANG Mingyue, LI Zhihui, GAO Zheng
College of Electronic Engineering, Guangxi Normal University, Guilin, Guangxi 541004, China
全文: PDF(1323 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 结合电力网络的拓扑结构与电气特性,提出一种综合多属性的电网关键节点识别方法。从复杂网络理论出发,首先根据电网的拓扑与电气特性提出了多种评估指标得到评价矩阵,然后结合层次分析法和变异系数法对其赋权得到最终的决策矩阵,最后采用与灰色关联度相结合的TOPSIS方法,计算出电网中节点的重要度排序。为了比较不同识别方法的优劣,采用网络效能和动力学同步性能进行验证,并用实际电网进一步验证了所提方法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何铭
邹艳丽
梁明月
李志慧
高正
关键词 复杂网络关键节点识别TOPSIS法层次分析法变异系数法灰色关联度    
Abstract:Combined with the topological characteristics and electrical characteristics, this paper proposes an integrated multi-attribute decision method for identifying key nodes in a power grid. Firstly, based on the complex network theory, several evaluation indicators are proposed and calculated considering the topology characteristics and the electrical characteristics of a power grid, an evaluation matrix is obtained. Then the final decision matrix is obtained by weighting the evaluation matrix combined with the analytic hierarchy process and the coefficient of variation method. Finally, the TOPSIS method combined with grey correlation degree is used to calculate the ranking of the important nodes in the power grid.In order to compare the advantages and disadvantages of different identification methods, the network efficiency and synchronization performance are adopted. An actual local power grid is used to further verify the effectiveness a feasibility of the proposed method.
Key wordscomplex network    critical node identification    TOPSIS method    analytic hierarchy process    coefficient of variation method    grey correlation degree
收稿日期: 2019-11-20      出版日期: 2020-09-23
ZTFLH:  TM743  
基金资助:国家自然科学基金(11562003)
通讯作者: 邹艳丽(1972-),女,河北沧州人,博士,教授,主要研究方向为智能电网的优化与稳定控制、复杂网络建模与动力学行为分析。   
作者简介: 何铭(1994-),男,湖北仙桃人,硕士研究生,主要研究方向为电力网络稳定性及关键环节识别。
引用本文:   
何铭, 邹艳丽, 梁明月, 李志慧, 高正. 基于多属性决策的电力网络关键节点识别[J]. 复杂系统与复杂性科学, 2020, 17(3): 27-37.
HE Ming, ZOU Yanli, LIANG Mingyue, LI Zhihui, GAO Zheng. Critical Node Identification of a Power Grid Based on Multi-Attribute Decision. Complex Systems and Complexity Science, 2020, 17(3): 27-37.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2020.03.002      或      http://fzkx.qdu.edu.cn/CN/Y2020/V17/I3/27
[1] Alireza S, Mohammad K, Ali M. Vulnerability analysis of power grid with the network science approach based on actual grid characteristics: A case study in Iran[J].Physica A:Statistical Mechanics and Its Applications, 2018:S0378437118309993.
[2] Andersson G, Donalek P, Farmer R, et al. Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance[J].IEEE Transactions on Power Systems, 2005, 20(4):1922-1928.
[3] Albert, R, Albert, I, Nakarado G L . Structural vulnerability of the North American power grid[J]. Physical Review E, 2004, 69(2):025103.
[4] 易俊,卜广全,郭强, 等.巴西“3·21”大停电事故分析及对中国电网的启示[J].电力系统自动化, 2019, 43(02):7-15.
Yi Jun, Bu Guangquan, GuoQiang, et al. Analysis on blackout in brazilian power grid on March 21, 2018 and its enlightenment to power grid in China[J].Power System Automation, 2019, 43 (02): 7-15.
[5] 魏震波,刘俊勇,朱国俊,等.电力系统脆弱性理论研究[J]. 电力自动化设备, 2009(7): 38-43.
Wei Zhenbo, Liu Junyong, Zhu Guojun, et al. Power system vulnerability[J].Power Automation Equipment, 2009 (7): 38-43.
[6] 谢琼瑶,邓长虹,赵红生,等.基于有权网络模型的电力网节点重要度评估[J].电力系统自动化,2009,33(4):21-24.
XieQiongyao, Deng Changhong, Zhao Hongsheng,et al. Evaluation method for node importance of power grid based on the weighted network model[J].Power System Automation, 2009,33(4): 21-24.
[7] 林鸿基,赵昱宣,林冠强,等.基于改进节点重要度贡献矩阵的电网关键节点识别[J].电力建设, 2017(10):67-73.
Lin Hongji, Zhao Yuxuan, Lin Guanqiang, et al. Critical node identification in power systems based on improved node importance contribution matrix[J].Power Construction, 2017(10): 67-73.
[8] 王佳裕, 顾雪平, 王涛,等. 一种综合潮流追踪和链接分析的电力系统关键节点识别方法[J]. 电力系统保护与控制, 2017, 45(6):22-29.
Wang Jiayu, GuXueping, Wang Tao, et al. Power system critical node identification based on power tracing and link analysis method[J].Power System Protection and Control,2017,45(6):22-29.
[9] Lin Z Z, Wen F S, Zhao J H, et al. Controlled islanding schemes for interconnected power systems based on coherent generator group identification and wide-area measurements[J].Journal of Modern Power Systems and Clean Energy, 2016,4(3):440-453.
[10] 刘健, 徐精求,程红丽,等.配电网抗灾变性分析及其在配电网规划安全运行中的应用[J].中国电力, 2005, 38(5):34-38.
Liu Jian, Xu Jingqiu, Cheng Hongli, et al. Analysis of anti-accident ability of distribution networks and its applications in planning ,safe operation & restoration[J]. China Electric Power,2005,38(5):34-38.
[11] 吴辉,彭敏放,张海艳,等.基于复杂网络理论的配电网节点脆弱度评估[J].复杂系统与复杂性科学, 2017(1), 38-45.
Wu Hui, Peng Minfang, Zhang Haiyan, et al. Node vulnerability assessment for distribution network based on complex network theory[J]. Complex System and Complexity Science,2017(1),38-45.
[12] Du Y, Gao C, Hu Y, et al. A new method of identifying influential nodes in complex networks based on TOPSIS[J]. Physica A: Statistical Mechanics and its Applications,2014,399:57-69.
[13] 孙玉刚.灰色关联分析及其应用的研究[D]. 南京航空航天大学, 2007.
Sun Yugang. Research on grey incidence analysis and its application[D]. Nanjing University of Aeronautics and Astronautics, 2007.
[14] Wei B,Deng Y. A cluster-growing dimension of complex networks: from the view of node closeness centrality[J]. Physica A: Statistical Mechanics and Its Applications,2019,522:80-87.
[15] 傅杰, 邹艳丽, 谢蓉. 基于复杂网络理论的电力网络关键线路识别[J]. 复杂系统与复杂性科学, 2017(3):95-100.
Fu Jie, ZouYanli, XieRong. The critical lines identification of the power grids based on the complex network theory[J]. Complex system and complexity science,2017(3):95-100.
[16] 谭玉东.复杂电力系统脆弱性评估方法研究[D].长沙:湖南大学,2013.
Tan Yudong. Research on complex power system vulnerability assessment methods[D]. Changsha: Hunan University, 2013.
[17] 李昌超,康忠健,于洪国,等.基于改进PageRank算法的电网关键节点辨识方法[J]. 电力建设,2018,39 (11):43-50.
Li Changchao, Kang Zhongjian, Yu Hongguo, et al. Identification of critical node in power grid based on modified PageRank algorithm[J]. Power Construction, 2018, 39 (11):43-50.
[18] 李发旭,卫良.复杂网络子图中心性分析[J].青海师范大学学报(自然科学版),2013,29(4):11-16.
Li Fa Xu, Wei Liang. Analysis of subgraph centrality in complex networks[J].Journal of Qinghai Normal University (Natural Science Edition),2013,29(4):11-16.
[19] 温丽华.灰色系统理论及其应用[D].哈尔滨:哈尔滨工程大学, 2003.
Wen Lihua. Grey system theory and application[D]. Harbin: Harbin Engineering University, 2003.
[20] 刘思峰.灰色系统理论的产生与发展[J].南京航空航天大学学报,2004(2):267-272.
Liu Sifeng. Emergence and development of grey system theory and its forward trends[J].Journal of Nanjing University of Aeronautics and Astronautics, 2004(2):267-272.
[21] 郭海洋,柳劲松,程浩忠,等.基于模糊数学和组合赋权法的分布式电源并网综合评估[J].现代电力,2017,34(2):14-19.
Guo Haiyang, Liu Jinsong, Cheng haozhong, et al. Comprehensive evaluation of grid-connected distributed generation based on fuzzy mathematics and combinated weighting method[J].Modern Power, 2017,34(2): 14-19.
[22] 张文朝,顾雪平.应用变异系数法和逼近理想解排序法的风电场综合评价[J].电网技术,2014,38(10):2741-2746.
Zhang Wenchao, GuXueping. Comprehensive evaluation of wind farms using variation coefficient method and technique for order preference by similarity to ideal solution[J]. Grid Technology, 2014,38(10): 2741-2746.
[23] 宋伶俐,徐秋实,吴耀文.计及权重的电网投资效益评价与多目标优化[J].电力学报,2013,28(6):503-506.
Song Lingli, Xu Qiushi, Wu Yaowen. Evaluation and multi-objective optimization of power grid investment benefits taking into account the weights[J]. Journal of Electric Power, 2013,28 (6):503-506.
[24] 王炫丹,李华强,廖烽然,等.基于电压抗干扰因子与综合影响因子的电网关键节点辨识[J].电力自动化设备,2018,38(4):82-88.
Wang Xuandan, Li Huaqiang, Liao fengran, et al. Critical node identification of power grid based on voltage anti-interference factors and comprehensive influence factors[J]. Power Automation Equipment, 2018,38 (4):82-88.
[25] 张程, 于永军, 李华强, 等. 考量能量裕度及权重因子的电力系统节点综合脆弱性分析[J]. 电力自动化设备, 2016, 36(3):136-141.
Zhang Cheng, Yu Yongjun, Li Huaqiang, et al. Analysis of nodal comprehensive vulnerability considering energy margin and weight factor for power system[J]. Power Automation Equipment, 2016, 36 (3): 136-141.
[26] 雷成, 刘俊勇, 魏震波,等. 计及网络传导能力与抗干扰能力的节点综合脆弱评估模型[J]. 电力自动化设备, 2014, 34(7):144-149.
Lei Cheng, Liu Junyong, Wei Zhenbo, et al. Integrative evaluation model of node vulnerability considering network transmission ability and anti-interference ability[J]. Electric Power Automation Equipment, 2014, 34 (7): 144-149.
[27] FilatrellaG , Nielsen A H , Pedersen N F . Analysis of a power grid using a Kuramoto-like model[J]. The European Physical Journal B-Condensed Matter, 2008, 61(4):485-491.
[1] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[2] 王梓行, 姜大立, 漆磊, 陈星, 赵禹博. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3): 78-85.
[3] 徐开俊, 吴佳益, 杨泳, 梁磊. 中国航线网络结构的多层性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 39-46.
[4] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[5] 付莲莲, 冯家璇, 赵一恒. 生猪价格波动的复杂网络特征及模态传导[J]. 复杂系统与复杂性科学, 2019, 16(4): 82-89.
[6] 章平, 黄傲霜, 罗宏维. 不同类型复杂网络中个体合作行为互动的演化博弈模拟[J]. 复杂系统与复杂性科学, 2019, 16(3): 60-70.
[7] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
[8] 钟丽君, 宾晟, 袁敏, 孙更新. 多功能复杂网络模型及其应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 31-40.
[9] 董晓娟, 安海岗, 董志良. 有色金属国际期货市场价格联动效应演化分析——以铜、铝、锌为例[J]. 复杂系统与复杂性科学, 2018, 15(4): 50-59.
[10] 杨泳, 徐开俊, 姚裕盛, 向宏辉, 吴佳益. 飞行训练网络抗毁性实证分析[J]. 复杂系统与复杂性科学, 2018, 15(4): 69-76.
[11] 周双, 宾晟, 邵峰晶, 孙更新. 基于多子网复合复杂网络模型的物质扩散推荐算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 77-84.
[12] 种鹏云, 尹惠. 基于复杂网络的危险品道路运输网络优化策略研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 56-65.
[13] 吴凌杰, 邹艳丽, 王瑞瑞, 姚飞, 汪洋. 电力信息相互依存网络与单层电网的级联故障比较[J]. 复杂系统与复杂性科学, 2018, 15(3): 11-18.
[14] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-10.
[15] 丁毓, 刘三阳, 陈静静, 白艺光. 基于复杂网络的差分进化算法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Baidu
map