Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (3): 27-32    DOI: 10.13306/j.1672-3813.2022.03.004
  本期目录 | 过刊浏览 | 高级检索 |
基于Conformable分数阶导数的COVID-19模型及其数值解
王宇1,2, 冯育强1
1.武汉科技大学理学院,武汉 430081;
2.上海大学理学院,上海 200444
COVID-19 Model Based on Conformable Fractional Derivativeand Its Numerical Solution
WANG Yu1,2, FENG Yuqiang1
1. School of Science, Wuhan University of Science and Technology, Wuhan 430081, China;
2. School of Science, Shanghai University, Shanghai 200444, China
全文: PDF(1163 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为掌握新冠疫情传播规律、预测其发展趋势以及提供相应的防控依据,找到合适的COVID-19传染病动力学模型,采用SEIRV仓室模型,结合Conformable分数阶导数建立传染病动力学模型。利用数值方法来离散Conformable分数阶导数微分方程,求其数值解。对武汉市2020年1月23号到2020年2月11号的确诊数据进行数值仿真。 考虑武汉市政府在2020年2月12号对疫情数据进行了修订,新增数据将近14 000人。通过对SEIRV模型的阶数值进行修正,再对修订后的数据进行仿真。两次仿真结果与公布数据基本吻合。结果表明,相比于传统的整数阶模型,分数阶模型可以对修正后的数据进行仿真。这体现了分数阶传染病动力学模型的优势,并且能对COVID-19模型的预测提供一定的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宇
冯育强
关键词 COVID-19传染病动力学模型Conformable分数阶导数数值仿真    
Abstract:After the outbreak of COVID-19, it is of great significance to find an appropriate dynamic model of COVID-19 epidemic in order to master its transmission law, predict its development trend, and provide corresponding prevention and control basis. In this paper, the SEIRV chamber model is adopted, and the dynamics model of infectious disease is established by combining the fractional derivative of Conformable. The fractional derivative differential equation of Conformable is discretized by numerical method and its numerical solution is obtained. In addition, numerical simulation was carried out on the confirmed data of Wuhan city from January 23, 2020 to February 11, 2020. At the same time, consider that the Wuhan municipal government revised the epidemic data on February 12, 2020, adding nearly 14,000 people. The order α value of SEIRV model is modified, and then the revised data is simulated. The simulation results are in good agreement with the published data. The results show that compared with the traditional integer order model, the fractional order model can simulate the modified data. This reflects the advantages of fractional infectious disease dynamics model, and can provide certain reference value for the prediction of COVID-19 model.
Key wordsCOVID-19    infectious disease dynamics model    conformable fractional derivative    numerical simulation
收稿日期: 2021-07-11      出版日期: 2022-10-12
ZTFLH:  TB1  
基金资助:国家自然科学基金重点项目(72031009)
通讯作者: 冯育强(1975-),男,陕西咸阳人,博士,教授,主要研究方向为系统科学的数学理论。   
作者简介: 王宇(1999-),男,湖北孝感人,硕士研究生,主要研究方向为分数阶微分方程的建模、分析与计算。
引用本文:   
王宇, 冯育强. 基于Conformable分数阶导数的COVID-19模型及其数值解[J]. 复杂系统与复杂性科学, 2022, 19(3): 27-32.
WANG Yu, FENG Yuqiang. COVID-19 Model Based on Conformable Fractional Derivativeand Its Numerical Solution. Complex Systems and Complexity Science, 2022, 19(3): 27-32.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.03.004      或      https://fzkx.qdu.edu.cn/CN/Y2022/V19/I3/27
[1] 赵子鸣, 勾文沙, 高晓惠, 等. COVID-19 疫情防控需要社区监测及接触者追踪并重[J]. 复杂系统与复杂性科学, 2020, 17(4): 1-8.
ZHAO Z M,GOU W S,GAO X H, et al. Intervention and control of COVID-19 requires both community-based monitoring and contact tracing[J]. Complex Systems and Complexity Science, 2020, 17(4): 1-8.
[2] KERMACK W O , MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society A,1927,115: 700-721.
[3] 王俊芬,陈振煜,刘思德.基于仓室模型的传染病动力学建模方法概述及应用[J].现代消化及介入诊疗,2020, 25(3): 280-283.
WANG J F,CHEN Z Y,LIU S D. An overview of epidemiological modeling methods based on compartment model and its application[J]. Modern Digestion and Intervention, 2020, 25(3): 280-283.
[4] 刘昌孝,王玉丽,张洪兵.应用 “房室模型” 动力学认识新型冠状病毒肺炎(COVID-19)爆发期的传播规律[J].现代药物与临床,2020,35(4): 597-606.
LIU C X,WANG Y L,ZHANG H B. Using “compartment model” dynamics to understand the transmission regularity of coronavirus disease 2019 (COVID-19) during the outbreak period[J]. Drugs and Clinic,2020,35(4):597-606.
[5] 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J].山东大学学报(理学版), 2019, 54(1): 116-126.
LI L L, JIA J W. Hopf bifurcation of a SIRC epidemic model with delay[J]. Journal of Shandong University(Natural Science), 2019, 54(1): 116-126.
[6] 陈田木,何琼,谭爱春,等.多途径戊肝传播动力学模型的建立及其在长沙市的应用[J].中国卫生统计,2014,31(2): 257-262.
CHEN T M,HE Q,TAN A C, et al. Establishment of a multi-channel hepatitis E transmission kinetic model and its application in Changsha[J]. Chinese Journal of Health Statistics,2014,31(2): 257-262.
[7] HILFER R. Applications of Fractional Calculus in Physics[M]. River Edge, NJ: World Scientific, 2000.
[8] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier, 2006.
[9] TARASOV V E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media[M]. Springer, Heidelberg: Springer Science and Business Media, 2011.
[10] NDAÏROU F, AREA I, NIETO J J, et al. Fractional model of COVID-19 applied to Galicia, Spain and Portugal[J]. Chaos, Solitons and Fractals, 2021, 144: 110652.
[11] YADAV R P, VERMA R. A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China[J]. Chaos, Solitons and Fractals, 2020, 140: 110124.
[12] PANWAR V S, UDUMAN S P S, GÓMEZ-AGUILAR J F. Mathematical modeling of coronavirus disease COVID-19 dynamics using CF and ABC non-singular fractional derivatives[J]. Chaos, Solitons and Fractals, 2021, 145: 110757.
[13] NDOLANE S. SIR epidemic model with Mittag-Leffler fractional derivative[J]. Chaos, Solitons and Fractals,2020,137: 109833.
[14] ABDELJAWAD T. On conformable fractional calculus[J]. Journal of Computational and Applied Mathematics, 2015, 279: 57-66.
[15] YANG C Y, WANG J. A mathematical model for the novel coronavirus epidemic in Wuhan, China[J]. Mathematical Biosciences and Engineering: MBE, 2020, 17(3): 2708.
[16] VAN D D P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2): 29-48.
[17] 崔玉美, 陈姗姗, 傅新楚. 几类传染病模型中基本再生数的计算[J]. 复杂系统与复杂性科学, 2019, 14(4): 14-31.
CUI Y M, CHEN S S, FU X C. The thresholds of some epidemic models[J]. Complex Systems and Complexity Science, 2017, 14(4): 14-31.
[18] 廖书, 杨炜明, 陈相臻. 霍乱动力学模型中的基本再生数的计算和稳定性分析[J]. 数值计算与计算机应用, 2012, 33(3): 189-197.
LIAO S, YANG W M, CHEN X Z. The basic reproduction number for the cholera outbreak[J]. Journal of Numerical Methods and Computer Applications, 2012, 33(3): 189-197.
[19] TANG B, WANG X, LI Q, et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J]. Journal of Clinical Medicine, 2020, 9(2): 462.
[20] SPENCER J A, SHUTT D P, Moser S K, et al. Epidemiological parameter review and comparative dynamics of influenza, respiratory syncytial virus, rhinovirus, human coronvirus, and adenovirus[DB/OL].[2021-04-11]. https://www.medrxiv.org/content/10.1101/2020.02.04.20020404v2.
[21] GELLER C, VARBANOV M, DUVAL R E. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies[J]. Viruses, 2012, 4(11): 3044-3068.
[1] 李冯, 宾晟, 孙更新. 基于时变参数的SCUIR传播模型的构建与研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 80-86.
[2] 席周慧, 孟德霖, 赵继军. 钻石公主号邮轮上COVID-19传播动态的研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 67-73.
[3] 李稚, 宋敏. 基于“病毒变异”和“环境传人”因素的COVID-19疫情传播动力学研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 1-8.
[4] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Baidu
map