Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (4): 17-24    DOI: 10.13306/j.1672-3813.2022.04.003
  本期目录 | 过刊浏览 | 高级检索 |
融合文本和表情符号特征的社交网络用户性别识别
王浩, 许小可
大连民族大学信息与通信工程学院,辽宁 大连 116600
Social Network User Gender Recognition by Combining Text and Emoji Features
WANG Hao, XU Xiaoke
College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China
全文: PDF(1927 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了提升社交网络用户性别识别的准确性,先将单用户的文本特征和表情符号特征进行融合识别用户性别,然后提取多用户的交互特征信息进一步提升性别识别的准确性。实验结果表明融合多用户交互特征后用户性别识别准确率提升了6.8%。说明表情符号和多用户交互特征对提升用户性别识别准确性有很大帮助,提高了社交网络用户性别信息识别的准确率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王浩
许小可
关键词 社交网络表情符号性别识别交互特征    
Abstract:In order to improve the accuracy of gender recognition for social network users, the text features and emoticon features of a single user are fused to identify the user's gender, and then the interactive feature information of multiple users is extracted to further improve the accuracy of gender recognition. The experimental results show that the accuracy of user gender recognition is improved by 6.8% after the fusion of multi-user interaction features. It shows that emoticons and multi-user interaction features are very helpful to improve the accuracy of user gender identification, and improve the accuracy of gender information identification of social network users.
Key wordssocial network    emoji    gender recognition    interactive features
收稿日期: 2021-07-20      出版日期: 2023-01-09
ZTFLH:  TP391  
基金资助:国家自然科学基金(61773091, 62173065); 辽宁省自然科学基金(2020MZLH22); 辽宁省“兴辽英才”计划项目(XLYC1807106)
通讯作者: 许小可(1979),男,辽宁庄河人,博士,教授,主要研究方向为网络科学和社交网络大数据。   
作者简介: 王浩(1996),男,山东青岛人,硕士研究生,主要研究方向为社交网络上信息传播。
引用本文:   
王浩, 许小可. 融合文本和表情符号特征的社交网络用户性别识别[J]. 复杂系统与复杂性科学, 2022, 19(4): 17-24.
WANG Hao, XU Xiaoke. Social Network User Gender Recognition by Combining Text and Emoji Features. Complex Systems and Complexity Science, 2022, 19(4): 17-24.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.04.003      或      https://fzkx.qdu.edu.cn/CN/Y2022/V19/I4/17
[1] 宋巍, 刘丽珍, 王函石. 基于兴趣偏好的微博用户性别推断研究[J]. 电子学报, 2016, 44(10):25222529.
SONG W, LIU L Z, WANG H S. User interest preferences for gender inference on microblog[J]. Acta Electronica Sinica, 2016, 44(10):25222529.
[2] RUI G, JING Q, ZHANG G. Web-based Chinese term extraction in the field of study[C]. 2015 11th International Conference on Semantics, Knowledge and Grids (SKG). Beijing, China, 2016.
[3] WANG Y, TANG Y, MA J, et al. Gender prediction based on data streams of smartphone applications[J]. Lecture Notes in Computer Science, 2015, 64(6):115125.
[4] XIAO C, FAN Z, YUE W. Predicting audience gender in online content-sharing social networks[J]. Journal of the Association for Information Science & Technology, 2013, 64(6):12841297.
[5] ALOWIBDI J S, BUY U A, YU P. Language independent gender classification on twitter[C]. Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining. New York, USA: Association for Computing Machinery, 2013:739743.
[6] BAMMAN D, EISENSTEIN J, SCHNOEBELEN T. Gender identity and lexical variation in social media[J]. Journal of Sociolingus, 2014, 18(2):135160.
[7] BRIAN Z M, HU D W. Gender prediction on twitter using stream algorithms with n-gram character features[J]. International Journal of Intelligence Science, 2012, 2(4A):143148.
[8] NEWMAN M L. Gender differences in language use: an analysis of 14 000 text samples[J]. Discourse Processes, 2008, 45(3):211236.
[9] 刘宝芹, 牛耘. 基于情绪特征的中文微博用户性别识别[J]. 计算机工程与科学, 2016, 38(9):19171923.
LIU B Q, LIU Y. Gender recognition of Chinese micro-blog users based on emotion features[J]. Computer Engineering & Science, 2016, 38(9):19171923.
[10] BARBIERI F, RONZANO F, SAGGION H. What does this emoji mean? a vector space skip-gram model for twitter emojis[C]. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016). Paris, France: European Language Resources Association, 2016: 39673972.
[11] RODRIGUES D, LOPES D, PRADA M, et al. A frown emoji can be worth a thousand words: perceptions of emoji use in text messages exchanged between romantic partners[J]. Telematics and Informatics, 2017, 34(8):15321543.
[12] YANG X, LIU M. The pragmatics of text-emoji co-occurrences on Chinese social media[J]. Pragmatics, 2020, 31(12):129.
[13] BUTTERWORTH S E, GIULIANO TA, WHITE J, et al. Sender gender influences emoji interpretation in text messages[J]. Frontiers in Psychology, 2019, 10:784.
[14] MUKHERJEE S, BALA P K. Gender classification of microblog text based on authorial style[J]. Information systems and e-business management: special issue on emerging technologies for e-business engineering, 2017, 15(1):117138.
[15] MONTERO C S, MUNEZERO M, Kakkonen T. Investigating the role of emotion-based features in author gender classification of text[C]. Proceedings of the International Conference on Intelligent Text Processing and Computational Linguistics. Kathmandu, Nepal, 2014:98114.
[16] BURGER J D, HENDERSO J C, KIM G, et al. Discriminating gender on twitter[C]. Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Pennsylvania. USA: Association for Computational Linguistics, 2011: 13011309.
[17] 王晶晶, 李寿山, 黄磊. 中文微博用户性别分类方法研究[J]. 中文信息学报, 2014, 28(6):150155.
WANG J J, LI S S, HUANG L. User gender classification in chinese microblog[J]. Journal of Chinese Information Processing, 2014, 28(6):150155.
[18] MCSHANE L, PANCER E, POOLE M, et al. Emoji, playfulness, and brand engagement on twitter[J]. Journal of Interactive Marketing, 2021, 53(3):96110.
[19] KELLY R, WATTS L. Characterising the inventive appropriation of emoji as relationally meaningful in mediated close personal relationships[EB/OL]. [20220316]. http://opus. bath. ac. uk/46780.
[20] PRADA M, RODRIGUES D L, GARRIDO M V, et al. Motives, frequency and attitudes toward emoji and emoticon use[J]. Telematics and Informatics, 2018, 35(7):19251934.
[21] LI S, RUI X, ZONG C, et al. A framework of feature selection methods for text categorization[C]. Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Pennsylvania, USA: Association for Computational Linguistics, 2009: 692700.
[22] 刘伟朋, 陈雁翔, 孙晓. 基于表情符号的中文微博多维情感分类的研究[J]. 合肥工业大学学报(自然科学版), 2014, 37(7):803807.
LIU W P, CHEN Y X, SUN X. Multidimensional sentiment classification method of Chinese micro-blog based on the emoticon[J]. Journal of Hefei University of Technology (Natural Science), 2014, 37(7):803807.
[23] MILLER H, THEBAULT-SPIEKER J, CHANG S, et al. “Blissfully happy” or “ready tofight”: varying interpretations of emoji[C]. International AAAI Conference on Web and Social Media. Cologne, Germany, 2016: 259268.
[1] 王玉, 许楠楠, 胡海波. 社交媒体中的跨平台信息扩散特征及机制[J]. 复杂系统与复杂性科学, 2022, 19(4): 7-16.
[2] 赵薇, 李建波, 吕志强, 董传浩. 融合时间和地理信息的兴趣点推荐研究[J]. 复杂系统与复杂性科学, 2022, 19(4): 25-31.
[3] 赵炎, 宾晟, 孙更新. 区块链社交网络中信息传播模型研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 1-8.
[4] 闫晓雪, 纪志坚. 社交网络中多领导者观点的博弈建模分析[J]. 复杂系统与复杂性科学, 2022, 19(1): 20-26.
[5] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[6] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[7] 刘飞, 王浩, 许小可. 社交媒体中表情符号的使用行为及成因分析[J]. 复杂系统与复杂性科学, 2020, 17(3): 70-77.
[8] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[9] 周双, 宾晟, 邵峰晶, 孙更新. 基于多子网复合复杂网络模型的物质扩散推荐算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 77-84.
[10] 吴晓, 刘万平, 杨武, 卢玲, 刘小洋, 黄诗雯. 新型社交网络谣言传播演化模型研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 34-44.
[11] 李沧海, 许益贴, 罗春海, 胡海波. 微博信息扩散的空间分析[J]. 复杂系统与复杂性科学, 2017, 14(3): 75-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Baidu
map