Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (2): 60-67    DOI: 10.13306/j.1672-3813.2024.02.008
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
考虑多种预警信息的双层网络拥堵传播模型
杨雅儒, 孙更新, 宾晟
青岛大学计算机科学技术学院,山东 青岛 266071
A Twotier Network Traffic Congestion Propagation Model Considering Multiple Warning Messages
YANG Yaru, SUN Gengxin, BIN Sheng
College of Computer Science & Technology, Qingdao University, Qingdao 266071, China
全文: PDF(2123 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为更好地揭示城市交通拥堵的传播机理,提出了多种预警信息子网与交通道路子网耦合的双层网络拥堵传播模型,并探讨多种预警信息下的城市道路拥堵风险传播机制。模型基于传播动力学建立了状态转移树,利用微观马尔科夫链(MMCA)分析传播阈值。最后,通过仿真实验分析多种预警信息对城市交通拥堵传播的影响。实验结果表明促进“速度快”预警信息传播和抑制“路程短”预警信息的扩散,对减缓交通拥堵压力能够起到积极作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨雅儒
孙更新
宾晟
关键词 城市交通预警信息拥堵传播分析双层网络微观马尔科夫链    
Abstract:In order to better reveal the propagation mechanism of urban traffic congestion, this paper proposes a two-layer network congestion propagation model coupled with multiple warning information subnetworks and traffic road subnetworks, and explores the propagation mechanism of urban road congestion risk under multiple warning information. The model establishes a state transfer tree based on propagation dynamics and analyzes the propagation threshold using microscopic Markov chain (MMCA). Finally, the impact of multiple warning messages on the propagation of urban traffic congestion is analyzed through simulation experiments. The experimental results show that promoting the propagation of "fast" warning information and inhibiting the spread of "short" warning information can play a positive role in reducing traffic congestion pressure.
Key wordsurban traffic    dual information    congestion propagation analysis    two-layered network    micro markov chain
收稿日期: 2022-09-13      出版日期: 2024-07-17
ZTFLH:  U121  
  TP391  
基金资助:山东省自然基金面上项目(ZR2021MG006);山东省社会科学规划项目(17CHLJ16)
通讯作者: 孙更新(1978-),男,山东青岛人,副教授,主要研究方向为复杂网络, 近年来着重于探索复杂网络中传播动力学及相关传播模型。   
作者简介: 第一作者: 杨雅儒(1997-),女,山东德州人,硕士研究生,主要研究方向为复杂网络。
引用本文:   
杨雅儒, 孙更新, 宾晟. 考虑多种预警信息的双层网络拥堵传播模型[J]. 复杂系统与复杂性科学, 2024, 21(2): 60-67.
YANG Yaru, SUN Gengxin, BIN Sheng. A Twotier Network Traffic Congestion Propagation Model Considering Multiple Warning Messages[J]. Complex Systems and Complexity Science, 2024, 21(2): 60-67.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.02.008      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I2/60
[1]PANHWAR M A, RAFIQUE A, ALI K, et al. Using crowed-source based approach for V2X communication for vehicular Ad Hoc network[C].IEEE 2019 Chinese Automation Congress (CAC).Hangzhou, 2019:12-19.
[2]HE J, HE Z, FAN B, et al. Optimal location of lane-changing warning point in a two-lane road considering different traffic flows [J]. Physical A: Statistical Mechanics Its Applications, 2019, 540:122988.
[3]HEDDEBAUT M, GHYS J P, SANZ M, et al. Road traffic information using a dedicated radio beacon [J]. Transportation Research Part C: Emerging Technologies, 2013, 35:20-33.
[4]LIU J, LI T, XIE P, et al. Urban big data fusion based on deep learning: an overview [J]. Information Fusion, 2020, 53:123-133.
[5]VALLEJOS S, ALONSO D G, CAIMMI B, et al. Mining Social Networks to Detect Traffic Incidents [J]. Information Systems Frontiers, 2020, 23(1): 115-134.
[6]WANG J L, LI X L, WANG L, et al. Research on Knowledge Discovery in Database of Traffic Flow State Based on Attribute Reduction [M]. Springer, Cham: Computational Science-ICCS 2019, 2019.
[7]YANG Z X, ZHU M H. A Dynamic prediction model of real-time link travel time based on traffic big data[C].IEEE 2019 International Conference on Intelligent Transportation, Big Data & Smart City.Changsha,2019:330-333.
[8]KHOO H L, ASITHA K S. An impact analysis of traffic image information system on driver travel choice [J]. Transportation Research Part A Policy Practice, 2016, 88:175-194.
[9]DIALLO E H, DIB O, AL AGHA K. A blockchain-based approach to track traffic messages in vehicular networks[C]// GUPTA G, WANG L, YADAV A, et al. Advances in Intelligent Systems and Computing. Wenzhou, 2022: 345-362.
[10] 马姝宇. 交通信息影响下节假日出行选择行为研究 [D].北京:北京交通大学, 2017.
Ma S Y. Research on holiday travel choice behavior under the influence of trafficinformation[D]. Beijing: Beijing Jiaotong University, 2017.
[11] 黄思维. 社交网络交通拥堵信息传播机理及影响研究 [D].重庆:重庆交通大学, 2019.
Huang S W. Research on the communication mechanism and influence of traffic congestion information on socialnetworks[D]. Chongqing: Chongqing Jiaotong University, 2019.
[12] WU J, GAO Z, SUN H. Simulation of traffic congestion with sir model [J]. Modern Physics Letters B, 2008, 18(30): 1537-1542.
[13] WANG Z S, GUO Q T, SUN S W, et al. The impact of awareness diffusion on SIR-like epidemics in multiplex networks [J]. Applied Mathematics Computation, 2019, 349:134-147.
[14] HUANG J H, SUN M G, CHENG Q. Congestion risk propagation model based on multi-layer time-varying network [J]. International Journal of Simulation Modelling, 2021, 20(4): 730-741.
[15] HUO L, GUO H, CHENG Y, et al. A new model for supply chain risk propagation considering herd mentality and risk preference under warning information on multiplex networks [J]. Physical A: Statistical Mechanics its Applications, 2020, 545.
[16] 周艳, 李妍羲, 江荣贵, 等. 交通拥堵与预警信息交互传播动力学分析 [J]. 地球信息科学学报, 2017, 19(10): 1279-1286.
Zhou Y, Li Y X, Jiang R G, et al. Dynamic analysis of interactive transmission of warning information and traffic congestion [J]. Journal of Geo-information Science, 2017, 19(10): 1276-1289.
[17] GUO H, XU L. Research on the application of big data visualization technology in urban road congestion [J]. European Journal of Remote Sensing, 2022, 1-12.
[18] 黄建华, 孙梦歌. 考虑出行者行为的多重网络拥堵风险传播模型 [J]. 交通运输系统工程与信息, 2021, 21(1): 8-15.
HUANG J H, SUN M G. Multi-network congestion risk propagation model considering driverbehavior[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 8-15.
[19] BB S, RIORDAN O, SPENCER J, et al. The degree sequence of a scale-free random graph process [J]. Random Structures Algorithms, 2001,18(3):279-290.
[20] OHTSUKI, HISASHI, HAUERT, et al. A simple rule for the evolution of cooperation on graphs and social networks [J]. Nature, 2006, 441(7092): 502-505.
[1] 李雪岩, 张同宇, 祝歆. 基于深度强化学习的通勤走廊韧性恢复双层规划[J]. 复杂系统与复杂性科学, 2024, 21(1): 92-99.
[2] 林兆丰, 李树彬, 孔祥科. 地铁建设对公交系统鲁棒性的影响[J]. 复杂系统与复杂性科学, 2023, 20(1): 66-73.
[3] 刘玉洁, 吕文红, 高歌, 龚桂敏. 城市公交网络系统韧性修复方案设计[J]. 复杂系统与复杂性科学, 2023, 20(1): 57-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Baidu
map