Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (2): 75-79    DOI: 10.13306/j.1672-3813.2024.02.010
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
一类概周期驱动分段光滑系统的奇异非混沌吸引子特性分析
赵奕凡1, 沈云柱2, 杜传斌2
1.青岛大学数学与统计学院,山东 青岛 266071;
2.济南大学数学科学学院,济南 250022
Characteristic Analysis of Strange Nonchaotic Attractors for a Quasiperiodically-forced Piecewise Smooth System
ZHAO Yifan1, SHEN Yunzhu2, DU Chuanbin2
1. School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China;
2. School of Mathematical Sciences, Jinan University, Jinan 250022, China
全文: PDF(1200 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 以一类概周期驱动分段光滑系统为研究对象,证实了奇异非混沌吸引子的存在性,并进一步分析了它的几种特性。首先采用相图和功率谱定性方法分析奇异非混沌吸引子的分形特性,再利用最大Lyapunov指数、相敏感指数、谱分布函数和有限时间Lyapunov指数分布定量方法进一步描述奇异非混沌吸引子的特性。结果表明,该系统在一定参数下存在奇异非混沌吸引子,该奇异非混沌吸引子表现出多种不同于其他类型吸引子的统计学特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵奕凡
沈云柱
杜传斌
关键词 分段光滑系统Lyapunov指数相敏感指数奇异非混沌吸引子    
Abstract:A quasiperiodically-forced piecewise smooth system is used as the research object to confirm the existence of strange nonchaotic attractors and further analyze several characteristics. Firstly, qualitative methods of phase diagram and power spectrum are used to analyze the fractal characteristics of strange nonchaotic attractors. Some quantitative methods such as the maximum Lyapunov exponent, phase sensitivity exponent, spectral distribution function and finite-time Lyapunov exponent are used to describe the characteristics of strange nonchaotic attractors. The results show that strange nonchaotic attractors can exist in the system under certain parameters, and exhibit a variety of statistical properties different from other types of attractors.
Key wordspiecewise smooth system    Lyapunov exponent    phase sensitivity exponent    strange nonchaotic attractors
收稿日期: 2022-11-24      出版日期: 2024-07-17
ZTFLH:  O415.6  
  O415.5  
基金资助:国家自然科学基金重点项目(11732014);山东省自然科学基金面上项目(ZR2021MA095)
通讯作者: 杜传斌(1977-),男,山东德州人,博士,讲师,主要研究方向为数值分析、偏微分方程数值解。   
作者简介: 第一作者: 赵奕凡(2000-),女,河北邯郸人,硕士研究生,主要研究方向为奇异非混沌动力学。
引用本文:   
赵奕凡, 沈云柱, 杜传斌. 一类概周期驱动分段光滑系统的奇异非混沌吸引子特性分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 75-79.
ZHAO Yifan, SHEN Yunzhu, DU Chuanbin. Characteristic Analysis of Strange Nonchaotic Attractors for a Quasiperiodically-forced Piecewise Smooth System[J]. Complex Systems and Complexity Science, 2024, 21(2): 75-79.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.02.010      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I2/75
[1]PIKOVSKY A S, FEUDEL U, KUZNETSOV S P. Strange Nonchaotic Attractors: Dynamics Between Order and Chaos In Quasiperiodically Forced Systems[M]. Singapore: World Scientific, 2006.
[2]GREBOGI C, OTT E, PELIKAN S, Yorke J A. Strange attractors that are not chaotic[J]. Physica D, 1984, 13(1/2): 261-268.
[3]PREMRAJ D, PAWAR S A, KABIRAJ L, et al. Strange nonchaos in self-excited singing flames[J]. EPL, 2020, 128(5): 54005.
[4]CABANAS A M, PEREZ L M, LAROZE D. Strange non-chaotic attractors in spin valve systems[J]. Journal of Magnetism and Magnetic Materials, 2018, 460: 320-326.
[5]RIZWANA R, RAJA-MOHAMED I. Strange nonchaotic dynamics of parametrically enhanced MLC circuit[J]. Journal of Computational Electronics, 2018, 17(3): 1297-1302.
[6]ZHOU C, CHEN T. Robust communication via synchronization between nonchaotic strange attractors[J]. EPL, 1997, 38(4): 261.
[7]RAMASWAMY R. Synchronization of strange nonchaotic attractors[J]. Physical Review E, 1997, 56(6): 7294.
[8]MITSUI T, AIHARA K. Dynamics between order and chaos in conceptual models of glacial cycles[J]. Climate Dynamics, 2014, 42(11): 3087-3099.
[9]LAROZE D, BECERRA-ALONSO D, GALLAS J A C, et al. Magnetization dynamics under a quasiperiodic magnetic field[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3567-3570.
[10] ZHOU T, MOSS F, BULSARA A. Observation of a strange nonchaotic attractor in a multistable potential[J]. Physical Review A, 1992, 45(8): 5394.
[11] HEAGY J F, HAMMEL S M. The birth of strange nonchaotic attractors[J]. Physica D: Nonlinear Phenomena, 1994, 70(1/2): 140-153.
[12] VENKATESAN A, MURALI K, LAKSHMANAN M. Birth of strange nonchaotic attractors through type III intermittency[J]. Physics Letters A, 1999, 259(3/4): 246-253.
[13] 张永祥, 俞建宁, 褚衍东, 孔贵芹. 一类新电路系统的奇怪非混沌吸引子分析[J]. 河北师范大学学报, 2008, 32(6): 753-757.
ZHANG Y, YU J, CHU Y, KONG G. Analysis of strange non-chaotic attractors for a class of new circuit systems [J]. Journal of Hebei Normal University, 2008, 32(6): 753-757.
[14] ZHANG Y, LUO G. Torus-doubling bifurcations and strange nonchaotic attractors in a vibro-impact system[J]. Journal of Sound and Vibration, 2013, 332(21): 5462-5475.
[15] ZHANG Y, SHEN Y. A new route to strange nonchaotic attractors in an interval map[J]. International Journal of Bifurcation and Chaos, 2020, 30(4): 2050063.
[16] YUE Y, MIAO P, XIE J. Coexistence of strange nonchaotic attractors and a special mixed attractor caused by a new intermittency in a periodically driven vibro-impact system[J]. Nonlinear Dynamics, 2016, 87(2): 1-21.
[17] LI G, YUE Y, XIE J, et al. Strange nonchaotic attractors in a nonsmooth dynamical system[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 78: 104858.
[18] LI G, YUE Y, LI D, et al. The existence of strange nonchaotic attractors in the quasiperiodically forced Ricker family[J]. Chaos, 2020, 30(5): 053124.
[19] LI G, YUE Y, GREBOGI C, et al. Strange nonchaotic attractors in a periodically forced piecewise linear system with noise[J]. Fractals, 2022, 30(1): 2250003.
[20] 沈云柱,张凡辉,东广霞. 概周期驱动分段Logistic系统的奇异非混沌吸引子[J]. 河北师范大学学报, 2019, 43(3): 207-212.
SHEN Y, ZHANG F, DONG G. Strange non-chaotic attractor for quasiperiodically driven piecewise Logistic Systems [J]. Journal of Hebei Normal University, 2019, 43(3): 207-212.
[21] 徐震,沈云柱. 概周期驱动的二维分段线性范式系统的奇异非混沌吸引子[J]. 济南大学学报, 2022, 36 (2): 231-236.
XU Z, SHEN Y. Strange non-chaotic attractors of two-dimensional piecewise linear normal form systems driven by almost period [J]. Journal of Jinan University, 2022, 36(2): 231-236.
[22] PRING S R, BUDD C J. The dynamics of regularized discontinuous maps with applications to impacting systems[J]. SIAM Journal on Applied Dynamical Systems, 2010, 9(1): 188-219.
[1] 张萌, 郭永峰, 刘倩茹. 双噪声激励下的基因转录调控系统的稳态分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 38-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Baidu
map