Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (2): 154-160    DOI: 10.13306/j.1672-3813.2024.02.019
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
城市快速路交织区交通震荡演化特性分析
胡嫣然1, 邴其春1, 张伟健1, 沈富鑫1, 高鹏2, 刘东杰2
1.青岛理工大学机械与汽车工程学院,山东 青岛 266520;
2.青岛市交通运输公共服务中心,山东 青岛 266100
Analysis of the Evolution Characteristics of Urban Expressway Traffic Oscillations
HU Yanran1, BING Qichun1, ZHANG Weijian1, SHEN Fuxin1, GAO Peng2, LIU Dongjie2
1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China;
2. Qingdao Transportation Public Service Center, Qingdao 266100, China
全文: PDF(3390 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为更精确地提取震荡数据,深入探究交通震荡演化特性,首先,通过采用单指数衰减函数拟合震荡车辆的速度标准差分析震荡的增长特性。其次,利用短时傅里叶变换提取频率强度的变化追踪震荡头车和减速阶段的加减速变化点,从而探究震荡的传播机理。研究结果表明:震荡过程中车辆的速度标准差沿车队呈凹形增加;震荡初期表现出前驱阶段,这一阶段车速变化缓慢,随着速度波动增大,震荡增长为向上游传播;减速阶段震荡的持续时间、振幅呈递增趋势,强度保持稳定;受交织区车辆随机性和不稳定性影响,主线不同车道发生的震荡因车辆行为不同在减速阶段的持续时间、振幅和强度大小存在差异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡嫣然
邴其春
张伟健
沈富鑫
高鹏
刘东杰
关键词 交通工程交通震荡短时傅里叶变换增长特性传播机理    
Abstract:In order to extract the oscillations data more accurately, the evolution characteristics of traffic oscillations are further explored. First, the growth characteristics of the oscillation are analyzed by fitting the speed standard deviation of the oscillating vehicle using a single exponential decay function. Secondly, the short-term Fourier transform is used to extract the change of frequency intensity to track the acceleration and deceleration change points of the oscillation head car and the deceleration stage, so as to explore the propagation mechanism of the oscillation. The analysis results show that the standard deviation of the vehicle′s speed increases along the concave convoy during the oscillation. The initial stage of the oscillation shows the forerunner stage, this stage of the speed change is slow, and as the speed fluctuation increases, the oscillation growth is spread upstream. Affected by the randomness and instability of vehicles in the interweaving area, the oscillations in different lanes of the main line vary in duration, amplitude and intensity of the deceleration phase due to different vehicle behaviors.
Key wordstraffic engineering    traffic oscillation    short-time Fourier transform    growth characteristics    propagation mechanism
收稿日期: 2022-06-29      出版日期: 2024-07-17
ZTFLH:  U491  
  U411  
基金资助:山东省重点研发计划项目(2019GGX101038);山东省自然科学基金(ZR2019MG012)
通讯作者: 邴其春(1989-),男,山东即墨人,博士,副教授,主要研究方向为智能交通系统关键理论与技术。   
作者简介: 第一作者: 胡嫣然(1998-),女,安徽铜陵人,硕士研究生,主要研究方向为交通流理论的研究。
引用本文:   
胡嫣然, 邴其春, 张伟健, 沈富鑫, 高鹏, 刘东杰. 城市快速路交织区交通震荡演化特性分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 154-160.
HU Yanran, BING Qichun, ZHANG Weijian, SHEN Fuxin, GAO Peng, LIU Dongjie. Analysis of the Evolution Characteristics of Urban Expressway Traffic Oscillations[J]. Complex Systems and Complexity Science, 2024, 21(2): 154-160.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.02.019      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I2/154
[1]SCHOENHOF M, HELBING D. Empirical features of congested traffic states and their implications for traffic modeling[J]. Transportation Science, 2007,41(2):135-166.
[2]LAVAL J A. Stochastic processes of moving bottlenecks: approximate formulas for highway capacity[J]. Transportation Research Record: Journal of the Transportation Research Board, 2006,1988(1):86-91.
[3]LAVAL J A, DAGANZO C F. Lane-changing in traffic streams[J]. Transportation Research Part B, 2006,40(3):251-264.
[4]ZHENGZ D, AHN S, CHEN D J, et al. Applications of wavelet transform for analysis of freeway traffic: bottlenecks, transient traffic, and traffic oscillations[J]. Transportation Research Part B, 2011,45(2):372-384.
[5]ZHENG Z, AGN S, MONSERE C M. Impact of traffic oscillations on freeway crash occurrences[J]. Accident Analysis and Prevention, 2010,42 (2):626-636.
[6]王飞跃,戴汝为,张嗣瀛,等.关于城市交通、物流、生态综合发展的复杂系统研究方法[J].复杂系统与复杂性科学,2004(2):60-69.
WANG F Y, DAI R W, ZHANG C Y, et al. A complex system approach for studying sustainable and integrated development of metropolitan transportation, logistics and ecosystems[J]. Complex Systems and Complexity Science,2004(2):60-69.
[7]HELBING D, HENNECKE A, TREIBER M. Phase diagram of traffic states in the presence of inhomogeneities[J]. Physical Review Letter, 1999,82 (21):4360-4363.
[8]JIANG R, JIN C J, ZHANG H M, et al. Experimental and empirical investigations of traffic flow instability[J]. Transportation Research Part C, 2018, 94:83-98.
[9]TREIBER M, KESTING A. The intelligent driver model with stochasticity-new insights into traffic flow oscillations[J]. Transportation research procedia, 2017, 23: 174-187.
[10] LAVAL J A, TOTH C S, ZHOU Y. A parsimonious model for the formation of oscillations in car-following models[J]. Transportation Research Part B: Methodological, 2014, 70: 228-238.
[11] TIAN J F, JIANG R, JIA B, et al. Empirical analysis and simulation of the concave growth pattern of traffic oscillations[J]. Transportation Research Part B, 2016, 93:338-354.
[12] TIAN J F, ZHANG H M, TREIBER M, et al. On the role of speed adaptation and spacing indifference in traffic instability: evidence from car-following experiments and its stochastic model[J]. Transportation Research Part B,2019,129:334-350.
[13] 黄永现.交通震荡演化特性的实验研究和建模仿真[D]. 合肥: 中国科学技术大学,2019.
HUANG Y X. Experimental research and modeling on the evolution of traffic oscillation[D]. Hefei: University of Science and Technology of China,2019.
[14] TIAN J F, LI G Y, TREIBER M, et al. Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow[J]. Transportation Research Part B Methodological, 2016, 93: 560-575.
[15] SAIFUZZAMAN M, ZHENG Z D, HAQUE M, et al. Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level[J]. Transportation Research Part B,2017,105: 523-538.
[16] ZHENG Z D, AHN S, CHEN D, et al. Freeway traffic oscillations: microscopic analysis of formations and propagation using wavelet transform[J]. Transportation Research Part B, 2011, 45(9): 1378-1388.
[17] MAUCH M, CASSIDY, M J. Freeway traffic oscillations: observations and predictions[C]// Transportation and Traffic Theory in the 21st Century: Proceedings of the 15th International Symposium on Transportation and Traffic Theory. Adelaide, Australia, 2002,653-674.
[18] 张娟.城市快速路瓶颈交通震荡特性研究[J].交通信息与安全,2015,33(5): 43-48.
ZHANG J. A study of traffic oscillations at the bottlenecks on urban expressways[J]. Journal of Transport Information and Safety,2015,33(5): 43-48.
[19] LI X P, PENG F, OUYANG Y F. Measurement and estimation of traffic oscillation properties[J]. Transportation Research Part B: Methodological, 2010, 44(1):1-14.
[20] ZHAO T, NIE Y M, Zhang Y. Extended spectral envelope method for detecting and analyzing traffic oscillations[J]. Transportation Research part B: methodological, 2014, 61: 1-16.
[21] 刘聪聪.移动瓶颈诱发的交通流演化特性分析[D].北京:北京交通大学, 2018.
LIU C C. Analysis of the evolution characteristics of traffic flow induced by moving bottleneck[D]. Beijing: Beijing Jiaotong University,2018.
[22] 李帅.交通震荡演化机理的元胞自动机建模与仿真研究[D].哈尔滨:哈尔滨工业大学,2020.
LI S. Modeling and simulation of cellular automata research on evolution mechanism of traffic oscillation[D]. Harbin: Harbin Institute of Technology,2020.
[23] 龚玲艳.基于非对称驾驶行为理论的停走交通波演变特征研究[D].长沙:长沙理工大学,2017.
GONG L Y. Research on the evolution characteristics of stop and go traffic wave based on asymmetric theory of driving behavior[D]. Changsha: Changsha University of Science and Technology,2017
[24] JIANG R, HU M B, ZHANG H M, et al. On some experimental features of car-following behavior and how to model them[J]. Transportation Research Part B, 2015, 80:338-354.
[25] JIANG R, HU M B, ZHANG H M, et al. Traffic experiment reveals the nature of car-following[J]. PLOS ONE, 2014,9(4): e94351.
[1] 纪鑫, 徐嘉明, 杨瑷玲, 于子兰, 唐铁桥. 突发传染病情况下高校行人流建模分析与管理控制:以高校食堂为例[J]. 复杂系统与复杂性科学, 2024, 21(1): 35-42.
[2] 李雪岩, 张同宇, 祝歆. 基于深度强化学习的通勤走廊韧性恢复双层规划[J]. 复杂系统与复杂性科学, 2024, 21(1): 92-99.
[3] 吴易, 王庆芝. 基于编队和动态优先级的混合路口通行策略[J]. 复杂系统与复杂性科学, 2024, 21(1): 126-131.
[4] 王震邦, 宋运忠. 考虑多方利益的大规模共享停车匹配优化策略[J]. 复杂系统与复杂性科学, 2023, 20(2): 52-59.
[5] 桂水荣, 蓝天飞, 陈水生, 葛世祺. 考虑车辆异质性的堵塞交通流模型研究[J]. 复杂系统与复杂性科学, 2023, 20(2): 98-104.
[6] 郭振起, 朱媛媛, 钟永光. 考虑复杂交通的废弃电器电子产品回收网络模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 81-89.
[7] 邓建华, 冯焕焕, 葛婷. 初始化对交通元胞自动机模型稳定性的影响[J]. 复杂系统与复杂性科学, 2023, 20(2): 105-110.
[8] 牟亮, 赵红, 崔翔宇, 袁焕涛, 李燕, 仇俊政. 基于改进Lagrange乘子法的交通信号配时优化研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 80-87.
[9] 李燕, 赵红, 牟亮, 仇俊政, 孙传龙, 刘晓童. 基于改进NSGAⅡ的左转待行区交叉口配时优化控制[J]. 复杂系统与复杂性科学, 2021, 18(1): 88-94.
[10] 李树彬, 傅白白, 孙涛, 党文修, 高歌. 复杂网络中观交通流动态限速控制策略研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 32-42.
[11] 孙晓燕, 韩晓, 闫小勇, 王文旭, 姜锐, 贾斌. 交通出行选择行为实验研究进展[J]. 复杂系统与复杂性科学, 2017, 14(3): 1-7.
[12] 牟亮, 赵红, 李燕, 仇俊政, 崔翔宇, 袁焕涛. 基于改进NSGA-Ⅱ的区域交通信号优化控制[J]. 复杂系统与复杂性科学, 2021, 18(3): 80-87.
[13] 刘浩敏, 曲大义, 宋慧, 孟奕名. 快速路交通流状态突变边界提取及其演化规律[J]. 复杂系统与复杂性科学, 2023, 20(3): 74-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Baidu
map