Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (4): 26-32    DOI: 10.13306/j.1672-3813.2023.04.004
  本期目录 | 过刊浏览 | 高级检索 |
中国铁路快捷货物运输网络复杂性分析
马亮1,2, 金福才3, 胡宸瀚3
1.西南交通大学信息科学与技术学院,成都 611756;
2.国家铁路智能运输系统工程技术研究中心,北京 100844;
3.中国铁道科学研究院集团有限公司电子计算技术研究所,北京 100081
Complexity Analysis of Chinese Railway Express Freight Transportation Network
MA Liang1,2, JIN Fucai3, HU Chenhan3
1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China;
2. The Center of National Railway Intelligent Transportation System Engineering and Technology, Beijing 100844, China;
3. Institute of Computing Technologies, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
全文: PDF(2264 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为提高网络模型的准确性和复杂性分析的全面性,提出L空间下铁路快捷货运无向加权复杂网络建模方法、节点重要度综合评价方法和基于综合重要度节点失效的网络鲁棒性分析方法。依据中国铁路快捷货运列车时刻表和车站间日均交互车流等数据,建立加权复杂网络模型并分析拓扑特性得到:现阶段中国铁路快捷货运网络具有小世界性、高度异质性、强度-度正相关性、点权均等性、加权非同类匹配性、强度-强度负相关性。基于网络效率和节点重要度评价指标,从随机失效和蓄意破坏2个方面4种情况对比分析鲁棒性得到:节点遭受蓄意破坏比随机失效使得网络更脆弱,节点遭受最大综合重要度破坏比最大强度破坏使得网络更脆弱、比最大加权介数破坏更快地使得网络崩溃,表明所提出的综合重要度评价指标具有节点强度和节点加权介数双重特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马亮
金福才
胡宸瀚
关键词 铁路快捷货运加权复杂网络拓扑结构复杂性鲁棒性    
Abstract:In order to improve the accuracy of complex network model and the comprehensiveness of complexity analysis, the method of modeling undirected weighted complex network of CREFTN in L-space (UWCN-CREFTN), the comprehensive importance evaluation index of the nodes and network robustness analysis method considering node failure based on comprehensive importance index are proposed. Based on the timetable and wagon-flow data, the results of analyzing the topological characteristics of UWCN-CREFTN show that CREFTN is a small-world network which has high heterogeneity, strength-degree positive correlation, point-weighted equality, weighted non-homogeneous matching, strength-strength negative correlation at present. Based on network efficiency and node importance, the results of analyzing the robustness of UWCN-CREFTN contrastively under four situations at two aspects show that the random failure of nodes makes the network more robust than vandalism, maximum-comprehensive-importance vandalism make the network more vulnerable than maximum-strength vandalism and completely collapse faster than maximum-weighted-betweenness vandalism, which indicates that the proposed comprehensive importance evaluation index has the dual characteristics of node strength and node weighted betweenness.
Key wordsrailway express freight transportation    weighted complex network    topological structure    complexity    robustness
收稿日期: 2022-02-15      出版日期: 2023-12-28
ZTFLH:  U294.1  
  N94  
基金资助:中国国家铁路集团有限公司科技研究开发计划(L2021X001);四川省科技计划项目(2021YJ0070)
作者简介: 马亮(1987-),男,江苏阜宁人,博士,讲师,主要研究方向为交通运输系统建模与仿真,交通运输信息化与优化。
引用本文:   
马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
MA Liang, JIN Fucai, HU Chenhan. Complexity Analysis of Chinese Railway Express Freight Transportation Network. Complex Systems and Complexity Science, 2023, 20(4): 26-32.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.04.004      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I4/26
[1] 庄河, 文超, 李忠灿, 等.基于高速列车运行实绩的致因—初始晚点时长分布模型[J].铁道学报, 2017, 39(9):25-31.
ZHUANG H, WEN C, LI Z C, et al. Cause based primary delay distribution models of high-speed trains on account of operation records [J].Journal of the China Railway Society, 2017, 39(9):25-31.
[2] WEN C, LI Z, LESSAN J, et al.Statistical investigation on train primary delay based on real records: evidence from Wuhan-Guangzhou HSR[J].International Journal of Rail Transportation, 2017, 5(3):1-20.
[3] 何大韧, 刘宗华, 汪秉宏.复杂系统与复杂网络[M]. 北京: 高等教育出版社, 2010: 276-278.
[4] 胡宸瀚, 马亮, 王健. 铁路运输复杂网络的拓扑特征与动力学研究综述[J]. 铁路计算机应用, 2021, 30(2):10-17.
HU C H, MA L, WANG J. Review of research on topological features and dynamics of complex railway transportation network[J]. Railway Computer Application, 2021, 30(2): 10-17.
[5] 冯佳, 许奇, 李夏苗,等. 城市轨道交通系统网络复杂性研究[J]. 交通运输系统工程与信息, 2017, 17(6):246-251.
FENG J, XU Q, LI X M,et al. Complex network study on urban rail transit systems [J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(6):246-251.
[6] WANG L, AN M, JIA L M, et al. Application of complex network principles to key station identification in railway network efficiency analysis[J]. Journal of Advanced Transportation, 2019(2019):1-13.
[7] 王小荣, 张玉召, 张振江. 铁路快捷货运物理网络结构特性分析[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(1): 132-136.
WANG X R, ZHANG Y Z, ZHANG Z J. Structural characteristics analysis of railway express freight network [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(1): 132-136.
[8] 詹斌, 杨雨婷, 鲁寒宇, 等. 全国铁路货物快运网络的复杂性分析[J]. 武汉理工大学学报:交通科学与工程版, 2018, 42(3): 393-397.
ZHAN B, YANG Y T, LU H Y, et al. Complexity analysis of countrywide railway freight express network [J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2018, 42(3): 393-397.
[9] YIN L Z, WANG Y F. Network characteristics and vulnerability analysis of Chinese railway network under earthquake disasters[J]. International Journal of Geo-Information, 2020, 9(697):1-19.
[10] GU S, LI K P. Reliability analysis of high-speed railway network[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2019, 233(6):1060-1073.
[11] 于宝, 冯春, 朱倩, 等. 中国高速铁路网络脆弱性分析[J]. 中国安全科学学报, 2017, 27(9): 110-115.
YU B, FENG C, ZHU Q, et al. Vulnerability analysis of China’s high speed railway network[J]. China Safety Science Journal, 2017, 27(9): 110-115.
[12] 刘朝阳, 吕永波, 刘步实, 等. 城市轨道交通运输网络级联失效抗毁性研究[J]. 交通运输系统工程与信息, 2018, 18(5):86-91.
LIU Z Y, LÜ Y B, LIU B S, et al. Cascading failure resistance of urban rail transit network[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5):86-91.
[13] BOCCALETTI S, LATORA V, MORENO Y, et al. Complex networks: structure and dynamics[J]. Physics Reports, 2006, 424(4-5):175-308.
[1] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[2] 林兆丰, 李树彬, 孔祥科. 地铁建设对公交系统鲁棒性的影响[J]. 复杂系统与复杂性科学, 2023, 20(1): 66-73.
[3] 卢炯, 许新建. 协同对社会传播的影响[J]. 复杂系统与复杂性科学, 2022, 19(3): 14-19.
[4] 谭桂敏, 汪丽娜, 臧臣瑞. 耦合二分网络识别通信系统流量的时空特征[J]. 复杂系统与复杂性科学, 2022, 19(2): 71-79.
[5] 王光波, 孙仁诚, 隋毅, 邵峰晶. 卷积神经网络复杂性质与准确率的关系研究[J]. 复杂系统与复杂性科学, 2021, 18(2): 60-65.
[6] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[7] 覃炳发, 李科赞. 桂林市公交换乘网络的实证分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 22-30.
[8] 韩定定, 祁婷, 李德志. 克隆植物生长扩散的生态复杂性[J]. 复杂系统与复杂性科学, 2020, 17(1): 15-20.
[9] 李小林, 许润杰, 娄洁, 许新建. 双层网络上的社会传播[J]. 复杂系统与复杂性科学, 2019, 16(4): 13-18.
[10] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
[11] 钟丽君, 宾晟, 袁敏, 孙更新. 多功能复杂网络模型及其应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 31-40.
[12] 宋甲秀, 杨晓翠, 张曦煌. 融合邻域鲁棒性及度均衡性的集体影响中心性[J]. 复杂系统与复杂性科学, 2019, 16(1): 26-35.
[13] 吴凌杰, 邹艳丽, 王瑞瑞, 姚飞, 汪洋. 电力信息相互依存网络与单层电网的级联故障比较[J]. 复杂系统与复杂性科学, 2018, 15(3): 11-18.
[14] 应尚军, 纪小妹, 吴婷婷. 国际资本流动网络复杂性研究的总体框架[J]. 复杂系统与复杂性科学, 2018, 15(1): 38-44.
[15] 傅杰, 邹艳丽, 谢蓉. 基于复杂网络理论的电力网络关键线路识别[J]. 复杂系统与复杂性科学, 2017, 14(3): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Baidu
map