Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (2): 52-59    DOI: 10.13306/j.1672-3813.2024.02.007
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
突发事件下粮食股市的抗毁性及预警研究
刘建刚, 陈芦霞
湖南工商大学 a.理学院, b.统计学习与智能计算湖南省重点实验室, 长沙 410205
Research on the Resistance and Early Warning of the Grain Stock MarketUnder Emergencies
LIU Jiangang, CHEN Luxia
a. School of Science; b. Hunan Key Laboratory of Hunan Province for Statistical Learning and Intelligent Computation Hunan University of Technology and Business, Changsha 410205, China
全文: PDF(7232 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为探究不同类突发事件对粮食网络抗毁性能的影响,以2019年新冠疫情、2021年郑州暴雨和2022年新冠变异毒株袭击上海3个突发事件为研究背景,采用格兰杰因果检测法构建粮食股票关联网络;通过对不同时期网络拓扑特征、节点重要性和抗毁性能的分析发现在面对整体或者局部突发事件的侵袭过程中,粮食关联网络内部结构会随着冲击程度产生一定的有效调节,占据主导作用的节点根据地理位置因素形成快捷有效的应援模式,对这些粮食供应重要节点的维系和保护往往是重点。攻击仿真结果显示,蓄意攻击迫害性比随机攻击更强,第2阶段的粮食关联网络遭受瓦解速度最为迅速,第3、4阶段抗毁性能不稳定程度更大。最后,在粮食股市运用的CUSUM控制图预警效果也较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘建刚
陈芦霞
关键词 粮食关联网络突发事件抗毁性CUSUM算法    
Abstract:In order to study the impact of different types of emergencies including COVID-19, July 20 Heavy rainstorm in Zhengzhou and variant strains of the new coronavirus attacked Shanghai in 2022 on the performance of food network security, the Grainger causal detection method was used to construct four different stages of food stock correlation network. Through the analysis of the network topology characteristics, node importance and anti-destruction performance in the three periods, it is found that in the process of facing the invasion of overall or local emergencies, the internal structure of the food-related network will be effectively adjusted with the degree of impact, and the nodes that occupy the leading role form a fast and effective response mode according to geographical factors, and the maintenance and protection of these important nodes of food supply is often the focus. The attack simulation results show that deliberate attacks are more persecutive than random attacks, and the food related networks in the second stage are disintegrated most rapidly, and the anti-destruction performance of the third and fourth stages is more unstable. Finally, the early warning effect of CUSUM control chart used in the grain stock market is also well reflected.
Key wordsgrain correlation network    major emergencies    invulnerability    CUSUM algorithm
收稿日期: 2022-07-27      出版日期: 2024-07-17
ZTFLH:  N949  
  F830.91文  
基金资助:湖南省教育厅科研基金项目(22B0612)
通讯作者: 陈芦霞(1998-),江西贵溪人,硕士研究生,主要研究方向为复杂网络在金融、经济领域的研究与应用。   
作者简介: 第一作者: 刘建刚(1984-),山东泰安人,博士,副教授,主要研究方向为多智能体系统分布式协同控制理论及其应用。
引用本文:   
刘建刚, 陈芦霞. 突发事件下粮食股市的抗毁性及预警研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 52-59.
LIU Jiangang, CHEN Luxia. Research on the Resistance and Early Warning of the Grain Stock MarketUnder Emergencies[J]. Complex Systems and Complexity Science, 2024, 21(2): 52-59.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.02.007      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I2/52
[1]牟能冶,程驰尧.面向突发事件的粮食铁水联运网络抗毁性研究[J].安全与环境学报,2023,23(3):713-723.
MOU N Y, CHENG C Y. Study on the invulnerability of rail-water intermodal transportation network of grain for emergencies[J]. Journal of Safety and Environment, 2023,23(3):713-723.
[2]杜志雄,高鸣,韩磊.供给侧进口端变化对中国粮食安全的影响研究[J].中国农村经济,2021,37(1):15-30.
DU Z X, GAO M, HAN L. The impacts of importance-side changes in grain supply on China’s food security[J]. Chinese Rural Economy, 2021,37(1):15-30.
[3]LI M, LIU R R, LÜ L,et al. Percolation on complex networks: theory and application[J]. Physics Reports, 2021,907:1-68.
[4]LATORA V, NICOSIA V, RUSSO G. Complex networks: principles, methods and applications[M]. Cambridge University Press, 2017.
[5]LIU F, WANG N I, WEI D. Analysis of chinese Stock market by using the method of visibility graph[J]. The Open Cybernetics & Systemics Journal, 2017, 11(1):36-43.
[6]MANTCGNA R N. Hierarchical Str-ucture in financial markets[J].The European Physical Journal B, 1999, 11(1):193-197.
[7]黄玮强,庄新田,姚爽.中国股票关联网络拓扑性质与聚类结构分析[J].管理科学,2008,22(3):94-103.
HUAN W Q, ZHUANG X T, YAO S. Topology property and clustering structure analysis of China’s stock correlation network[J]. Journal of Management Sciences, 2008,22(3):94-103.
[8]ZHENG Q, SONG L. Dynamic contagion of systemic risks on global main equity markets based on granger causality networks[J]. Discrete Dynamics in Nature and Society, 2018(2):1-13.
[9]PARK J H, CHANG W, SONG J W. Link prediction in the Granger causality network of the global currency market[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 553: 1-26.
[10] 吴俊,邓烨,王志刚,等.复杂网络瓦解问题研究进展与展望[J].复杂系统与复杂性科学,2022,19(3):1-13.
WU J, DENG Y, WANG Z G,et al. Status and prospects on disintegration of complex networks[J]. Complex Systems and Complexity Science, 2022,19(3):1-13.
[11] 蒋文君,刘润然,范天龙,等.多层网络级联失效的预防和恢复策略概述[J].物理学报,2020,69(8):81-91.
JIANG W J, LIU R R, FAN T L,et al. Overview of precaution and recovery strategies for cascading failures in multilayer networks[J]. ActaPhysica Sinica, 2020,69(8):81-91.
[12] HOLME P, KIM B J, YOON C N, et al. Attack vulnerability of complex networks[J]. Physical review E, 2002, 65(5): 056109.
[13] 吴俊,谭索怡,谭跃进,等.基于自然连通度的复杂网络抗毁性分析[J].复杂系统与复杂性科学,2014,11(1):77-86.
WU J, TAN S Y, TAN Y J,et al. Analysis of invulnerability in complex networks based on natural connectivity[J]. Complex Systems and Complexity Science,2014,11(1):77-86.[14] 崔慧霞,邱建龙,郭明,等.有向加权供应链网络级联失效的抗毁性研究[J].控制理论与应用,2021,38(11):1828-1834.
CUI H X, QIU J L, GUO M,et al. Research on invulnerability of cascading failures in directed weighted supply chain networks[J]. Control Theory & Applications,2021,38(11):1828-1834.
[15] 陈春霞.基于复杂网络的应急物流网络抗毁性研究[J].计算机应用研究,2012,29(4):1260-1262,1325.
CHEN C X. Study on invulnerability of emergency logistics network based on complex network[J]. Application Research of Computers, 2012,29(4):1260-1262,1325.
[16] SIGGIRIDOU E, KOUTLIS C, TSIMPIRIS A, et al. Evaluation of Granger causality measures for constructing networks from multivariate time series[J]. Entropy, 2019, 21(11): 1-24.
[17] 汪小帆, 李翔, 陈关荣. 网络科学导论[M].北京:高等教育出版社,2012.
[18] GUO J, WANG S, WANG D, et al. Spatial structural pattern and vulnerability of China-Japan-Korea shipping network[J]. Chinese Geographical Science, 2017, 27(5): 697-708.
[19] HAWKINS D M. A CUSUM for a scale parameter[J]. Journal of Quality Technology, 1981, 13(4): 228-231.
[20] 王芝珺,雷骏峰,吴纯杰.基于对数似然比的多元加权Poisson CUSUM控制图研究及应用[J].系统科学与数学,2021,41(3):837-853.
WANG Z J, LEI J F, WU C J. Weighted multivariate Poisson CUSUM control chart based on log-likelihood ratio[J].Journal of Systems Science and Mathematical, 2021,41(3):837-853.
[1] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[2] 郭明健, 高岩. 基于复杂网络理论的电力网络抗毁性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 1-6.
[3] 赵军产, 王少薇, 陆君安, 王敬童. 疫情背景下全球股市网络的抗毁性及预警研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 52-59.
[4] 王梓行, 姜大立, 漆磊, 陈星, 赵禹博. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3): 78-85.
[5] 杨泳, 徐开俊, 姚裕盛, 向宏辉, 吴佳益. 飞行训练网络抗毁性实证分析[J]. 复杂系统与复杂性科学, 2018, 15(4): 69-76.
[6] 贾承丰, 韩华, 完颜娟, 吕亚楠. 基于网络模体特征攻击的网络抗毁性研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 43-50.
[7] 董政呈, 方彦军, 田猛. 相互依存网络抗毁性研究综述[J]. 复杂系统与复杂性科学, 2017, 14(3): 30-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Baidu
map